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Abstract. The basic properties of infrared laser radiation odd harmonic generation due to electron-charged
impurity collisions in degenerate semiconductors are investigated. It is found that in the case of relatively
weak fields, the electron Fermi distribution is the cause of an anomalous suppression of harmonic radiation.
In the case of strong fields, the effect of the selective suppression of single harmonics is established.

PACS. 78.20.-e Optical properties of bulk materials and thin films

1 Introduction

Investigation of infrared harmonic generation in semicon-
ductors began many years ago (see, for example, [1,2]).
It was rapidly established that, analogous to the situa-
tion occurring in a plasma [3], the nonlinear dependence
of the electron collision frequency on the quiver velocity
imparted to the electrons by a strong laser field acts as
an important mechanism of high-order harmonic gener-
ation. In non-degenerate semiconductors, such a mecha-
nism has been investigated for different collision processes:
namely, for electron collisions with optical [4] and acous-
tic [5] phonons; and for electron collisions with charged
impurities [6]. However, it soon became evident that it was
extremely difficult to observe the harmonics generated via
such a mechanism, and the subject lost its attractiveness.

For such a mechanism to act efficiently to generate
harmonics, the collision frequency must be as large as pos-
sible. At the same time, a large collision frequency leads
to efficient electron heating and, in some cases, to lattice
heating as well. When it occurs, the electron nonlinear
response is strongly damped, or the lattice destroyed. Re-
cently new experimental possibilities have become avail-
able, which make it both timely and useful to recon-
sider and develop further the theory of harmonic genera-
tion in semiconducting media based on electron collisions.
It is now possible to generate powerful ultrashort laser
pulses, with durations comparable with the cycle corre-
sponding to the laser fundamental frequency ω (see, for
example, [7,8]). It is the aim of this Communication to
undertake the theoretical consideration of infrared radi-
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ation harmonic generation in degenerate semiconductors
based on electron-charged impurity collisions.

Below we derive the nonlinear correction to the current
density due to collisions, when a laser radiation acts on a
degenerate semiconductor. Such a correction allows us to
find the electric field corresponding to the harmonic fre-
quencies (2n+1)ω, n = 1, 2, ... Further, a general formula
is derived for the harmonic generation efficiency. The gen-
eration efficiency is analyzed versus the ratio of the elec-
tron quiver energy imparted by the laser field mv2

E/2 to
the electron thermal energy kT , and versus the ratio of the
chemical potential µ to kT . We report that, in a weak field,
when the quiver energy is smaller than the chemical poten-
tial, in a degenerate semiconductor, harmonic generation
is severely damped. The physical reason is traced back
to the exponentially small number of electron free states
below the Fermi level. For strong fields, when mv2

E/2 is
larger than µ by several times, we establish analytically
and numerically the effect of disappearance of particular
harmonics for specific values of the ratio mv2

E/2µ. Such an
effect is not observed in non-degenerate semiconductors.

2 Harmonics of current density

The electron distribution over quasi-momenta in degener-
ate semiconductors is described by the Fermi function

fF =
2

(2π�)3

{
exp

[
ε(−→p ) − µ

κT

]
+ 1

}−1

, (1)

where � is the Planck constant, κ the Boltzmann con-
stant, T the electron temperature, µ the chemical po-
tential, ε(−→p ) the electron energy as function of the
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quasi-momentum. In what follows we will restrict our
analysis to semiconductors with the simplest dispersion
law, i.e. ε(−→p ) = p2/2m, where m is the electron effective
mass. In formula (1) the chemical potential µ depends on
temperature and electron density and is found from the
relation

N =
∫

d−→p fF . (2)

As we will consider highly degenerate semiconductors,
when the Fermi energy εF = �

2(3π2N)2/3/2m is much
larger than the electron thermal energy κT , from (2)
one has

µ � εF − π2

12
(κT )2

εF
. (3)

Let us consider the action of infrared laser radiation
on such a semiconductor. We assume that the radiation
frequency ω is much smaller than the forbidden band
width, and much larger than both the electron plasma
frequency ωp and the effective collision frequency. The dis-
tance 2πv/ω covered by an electron having velocity v in a
laser field period is assumed to be small as compared with
the field wavelength λ = 2π/k, where

−→
k is the wavevec-

tor. We note that in a strong laser field the characteristic
electron velocity v may be larger than the Fermi veloc-
ity vF =

√
2εF /m. We assume also that the electrons

undergo collisions mainly with charged impurities, having
charge ei and concentration Ni. In such conditions, the
response of the semiconductor electrons to the laser field
action is determined by the kinetic equation

∂f

∂t
+

e

m

−→
E cos

(
ωt −−→

k −→r
) ∂f

∂−→v = St(f), (4)

where f is the non-equilibrium electron distribution func-
tion (EDF),

−→
E the laser field strength, e the electron

charge, and St(f) the electron-impurity collision integral.
Taking into account that the electrons change slightly
their quasi-momenta during collisions with charged impu-
rities, the collision integral is written in the Fokker-Planck
form

St(f) =
1
2
ν(v)

∂

∂vi

(
v2δij − vivj

) ∂

∂vj
f, (5)

where ν(v) = 4πe2e2
i NiΛε−1

s m−2v−3 is the electron-
impurity collision frequency, Λ the Coulomb logarithm, εs

the dielectric permittivity, v = p/m. As v/ω � 1/k and
ω � ωp, equation (4) does not take into account the spa-
tial variation of the field amplitude and of the EDF. The
inequality v/ω � 1/k additionally allows to neglect the in-
fluence of the laser radiation magnetic field on the electron
kinetics. As the collision frequency is much smaller than ω,
in considering the electron high-frequency response, the
collision integral in (4) may be taken into account accord-
ing to perturbation theory. In the first approximation, ne-
glecting the collisions in (4) we find

f0 = fF [−→v −−→v E(t)] , −→v E(t) = −→v E sin
(
ωt −−→

k −→r
)

,

(6)

where −→v E = e
−→
E/mω is the electron quiver amplitude.

The current density

−→
j 0 = e

∫
d−→p · −→v f0 = eN−→v E(t), (7)

corresponds to the distribution (6). At frequencies larger
than or of the same order as ω, the collision integral yields
a small correction δf to the function f0, |δf | � f0. By in-
tegrating the equation for δf with the weight e−→v over
the quasi-momenta one obtains the time derivative of the
high-frequency part of the correction to the current den-
sity δ

−→
j = e

∫
d−→p −→v δf ,

∂

∂t
δ
−→
j = e

∫
d−→p · −→v St {fF [−→v −−→v E(t)]} . (8)

From (8), taking into account the collision integral explicit
form (5) we obtain

∂

∂t
δ
−→
j = ieνv3

F

∫
d−→p

∫
d−→q

(2π)3
4π

q2
−→q

× exp [i−→q −→v + i−→q −→v E(t)] fF (v), (9)

where ν = ν(vF ), and fF (v) is the Fermi EDF (1), −→p =
m−→v . Considering that in (9) the exponent depends on
time periodically through −→v E(t), ∂δ

−→
j /∂t is written as

a sum of the odd harmonics with frequencies (2n + 1)ω,
where n = 0, 1, ...,

∂

∂t
δ
−→
j =

∞∑
n=0

(
∂

∂t
δ
−→
j

)
2n+1

sin
[
(2n + 1)(ωt −−→

k −→r )
]
.

(10)
After integration over −→q and the quasi-momentum angles,
for the amplitude of the (2n+1) harmonic current density
time derivative we obtain(

∂

∂t
δ
−→
j

)
2n+1

= −16e−→v Eνp3
F

∫ 1

0

du u fF (uvE)F (n, u),

(11)

F (n, u) =
∫ 1

u

dxx√
x2 − u2

sin
[
(2n + 1) arcsin

(u

x

)]
. (12)

For the further analysis, the relation (11) is conveniently
written as(

∂

∂t
δ
−→
j

)
2n+1

= −eN−→v EνI(n, γ, ∆), (13)

where the dimensionless function I(n, γ, ∆) depends on
the number n and on the parameters

γ =

√
mv2

E

κT
, ∆ =

mv2
E − 2µ

2κT
. (14)

and has the form

I(n, γ, ∆) =
12
π

∫ 1

0

dt t F
(
n,

√
1 − t2

)

×
[
1 + exp

(
∆ − 1

2
γ2t2

)]−1

. (15)
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3 Dependencies of current density in different
cases

For the limiting cases of interest, the function I(n, γ, ∆)
exhibits simple asymptotic forms. In particular, in the
weak field limit, when

µ � κT � mv2
E , (16)

one has γ � 1 and ∆ < 0, |∆| � 1. With such γ and ∆
from (15) one finds

I(0, γ, ∆) � 1 − e∆ � 1 − exp
(
− µ

κT

)
, (17)

I(n �= 0, γ, ∆) � 3(−1)n−1γ2n

8nn!(2n + 3)
e∆

� 3(−1)n−1

8nn!(2n + 3)

(
mv2

E

κT

)n

exp
(
− µ

κT

)
.

(18)

The relations (13) and (17) describe the correction to the
current density at the fundamental frequency ω due to
collisions of electrons with charged impurities. It is just
this correction which accounts for the laser field energy
dissipation. In fact, using (7), (10) and (13) one obtains
the absorbed power

Q =
ω

2π

∫ 2π
ω

0

dt
(−→

j 0 + δ
−→
j

)−→
E cos

(
ωt −−→

k −→r
)

= ν
E2

8π

ω2
p

ω2
I(0, γ, ∆), (19)

where ω2
p = 4πe2N/m. From (17) and (19) follows that

under the conditions (16) a small thermal spread in the
Fermi distribution yields an exponentially small decrease
of absorption.

The odd harmonics current density is given by formu-
lae (13) and (18). According to (18), in the weak field
case, odd harmonic generation is possible only thanks to
the presence of the electron thermal motion. At T → 0
harmonic generation does not take place. The harmonics
current density amplitude dependence on n and on the
field strength is similar to the case of a semiconductor ex-
hibiting a maxwellian EDF, but contains the additional
small exponential factor exp(−µ/κT ) characterizing the
electron distribution thermal spread near the Fermi level.

In a strong laser field the conditions may occur where

µ � mv2
E � κT. (20)

In such a case γ � 1, but as before ∆ < 0, |∆| � 1. With
such γ and ∆ from (15) one finds

I(n, γ, ∆) � δn,0 − (−1)n 12√
2π

γ−3e∆ =

δn,0 − (−1)n 12√
2π

(
κT

mv2
E

)3/2

exp
[
mv2

E − 2µ

2κT

]
, (21)

where δn,0 is the Kronecker delta symbol. Rigorously
speaking, for n � 1 the limiting transition from (18)
to (21) occurs for γ values different from unity. How-
ever, for applications large n values are of small interest.
As a matter of fact, for typical semiconductors, harmon-
ics with n � 1 are efficiently absorbed due to interband
transitions.

When the electron quiver energy is close to the Fermi
energy, the following inequality may occur

∣∣∣∣12mv2
E − µ

∣∣∣∣ � κT, (22)

which, jointly to µ � κT , gives γ � 1 and |∆| � 1. In
such a case from (15) one has

I(n, γ, ∆) � δn,0 − (−1)n 12√
2π

(√
2 − 1

)
ζ

(
3
2

)
γ−3 =

δn,0 − (−1)n 12√
2π

(√
2 − 1

)
ζ

(
3
2

) (
κT

mv2
E

)3/2

, (23)

where ζ(x) is the Riemann zeta function, ζ(3/2) � 2.6.
When the electron quiver energy satisfies the

inequalities

µ � 1
2
mv2

E − µ � κT, (24)

for the parameters γ and ∆ one has γ � √
∆ � 1, while

formula (15) takes the form

I(n, γ, ∆) � δn,0 − (−1)n 4
π

(
2∆

γ2

)3/2

= δn,0 − (−1)n 4
π

(
1 − 2µ

mv2
E

)3/2

. (25)

Finally, for very intense fields, when

1
2
mv2

E � µ � κT, (26)

∆ � γ2/2 � 1, and from (15) one finds

I(n, γ, ∆) � 2
π

(
2µ

mv2
E

)3/2

×
{

(2n + 1)
[
ln

(
2mv2

E

µ

)
+

2
3

]
− 2a(n)

}
, (27)

where a(0) = 0, a(1) = 4, a(2) = 28/3, a(3) = 232/15,
a(4) = 776/35. From the relations (13), (19) and (27)
is seen that in a strong laser field the effective electron-
impurity collision frequency is controlled by the electron
quiver energy rather than by the Fermi energy. In other
words, both the absorbed power and the harmonics cur-
rent density are proportional to ν(vE).

The approximate expressions (25) and (27) contain
only implicitly the dependence on temperature, which
manifests itself through the chemical potential. It per-
mits the writing of a unique interpolation formula instead
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of (25) and (27). By substituting in (15) the function
[1+exp(∆−γ2t2/2]−1 with the step-like Haviside function
η[γ−2

µ − 1 + t2], where γ2
µ = mv2

E/2µ, one has

I(n, γµ) =
12
π

∫ 1/γµ

0

du u F (n, u), γµ > 1. (28)

Formula (28) may be integrated in closed form for arbi-
trary n. In particular, for relatively small n, having the
largest interest, from (28) one finds

I(0, γµ) =
2
π

[
2
γ3

µ

ln
(
γµ +

√
γ2

µ − 1
)

+ arcsin
(

1
γµ

)
− 1

γ2
µ

√
γ2

µ − 1
]
, (29)

I(1, γµ) =
12
π

γ−3
µ

[
ln

(
γµ +

√
γ2

µ − 1
)
−

√
1 − γ−2

µ

]
,

(30)

I(2, γµ) =
4
3π

γ−3
µ

[
15 ln

(
γµ +

√
γ2

µ − 1
)

− (
23 − 8γ−2

µ

) √
1 − γ−2

µ

]
, (31)

I(3, γµ) =
4

15π
γ−3

µ

[
105 ln

(
γµ +

√
γ2

µ − 1
)

− (
197 − 164γ−2

µ + 72γ−4
µ

) √
1 − γ−2

µ

]
. (32)

In the limiting cases (24) and (26), formulae (29–32) give
the asymptotic expressions (25) and (27), respectively. Be-
sides, for intermediate values of the laser intensity, when
the transition from the inequality (24) to (26) takes place,
the functions I(n, γµ) with n ≥ 2 exhibit n-1 zeros. This
property is seen also from Figure 1, which shows the de-
pendencies of I(n, γ, ∆) on γ2 for n = 0, 1, 2, 3. The ze-
ros at particular γ values are due to the vanishing of the
corresponding terms of the series, in which the effective
collision frequency has been expanded. We note that the
dependencies reported in Figure 1 have been obtained by
numerically integrating the expression (15), in which the
finite value of the electron temperature is taken into ac-
count. The continuous curves correspond to µ/kT = 5,
while the dashed ones to µ/kT = 10. We remark that the
absence of some current harmonics at particular γ values is
not a consequence of using the interpolation formula (28).

4 Efficiency of harmonic generation

The current density (13) allows us to find the harmonic
field strength in the semiconductor point, where the source
is located. From the Maxwell equations we have the

γ2
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Fig. 1. Relative current density I(n, γ, ∆) at the frequencies
(2n + 1)ω, n = 1, 2, 3 and current density dissipative compo-
nent (n = 0) versus the ratio of the electron quiver energy to
the thermal energy γ2 = mv2

E/kT . The continuous curve cor-
responds to a semiconductor for which the ratio of the chem-
ical potential µ to kT is 5. The dashed curves correspond to
µ/kT = 10.

wave equation, describing the harmonic field with fre-
quency (2n + 1)ω,

(
εh

∂2

∂t2
− c2∆ + ω2

p

)−→
E 2n+1(−→r , t) =

− 4π

(
∂

∂t
δ
−→
j

)
2n+1

sin
[
(2n + 1)(ωt −−→

k −→r )
]
, (33)

where c is the speed of light, εh the semiconductor dielec-
tric permittivity in the infrared frequency domain. The
forced solution to (33) has the form

−→
E 2n+1(−→r , t) = −−→

E 2n+1 sin
[
(2n + 1)

(
ωt −−→

k −→r
)]

.

(34)
Taking into account the dispersion law of the fundamental
wave ω2 = (ω2

p + k2c2)/εh and the relation (13), for the
(2n + 1) harmonic field strength we find

−→
E 2n+1 =

−→
E

ν

ω

I(n, γ, ∆)
4n(n + 1)

, n ≥ 1. (35)

According to (34) and (35) the radiation at frequency
(2n + 1)ω propagates in the same direction as the fun-
damental wave and has the same linear polarization. The
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Fig. 2. Generation efficiency of the harmonics (2n + 1)ω,
n = 1, 2, 3 versus γ2 = mv2

E/kT . Caption as for Figure 1.

ratio of the flux density at the frequency (2n + 1)ω,
I(2n + 1) = cE2

2n+1/8π, to that of the fundamental wave,
I = cE2/8π, gives the odd harmonics generation efficiency

η(2n + 1) =
E2

2n+1

E2
=

( ν

ω

)2 I2(n, γ, ∆)
16n2(n + 1)2

≡
( ν

ω

)2

H(n, γ, ∆). (36)

According to (36) the generation efficiency is proportional
to the squared ratio of the collision frequency to the field
fundamental frequency, while the non trivial dependen-
cies on the harmonic number n, the radiation flux density,
and the EDF degeneracy degree are buried in the func-
tion H(n, γ, ∆).

As H(n, γ, ∆) ∼ I2(n, γ, ∆), the asymptotic expres-
sions for H(n, γ, ∆) directly follows from (17), (18), (21),
(23), (25) and (27). Figure 2 reports curves of the function
H(n, γ, ∆) versus γ2 = mv2

E/kT for n = 1, 2, 3. The con-
tinuous curves correspond to µ/kT = 5, while the dashed
ones to µ/kT = 10. From Figure 2 one can appreciate
how rapidly the harmonics generation efficiency grows in
a weak field, by increasing the electron temperature. The
curves with µ/kT = 5 for small γ display significantly
larger values. Besides, Figure 2 shows how abruptly the
harmonic generation efficiency decreases in weak fields. In
strong fields the dependency on γ2 is smoother, however,
there are isolated γ2 values at which the generation of
single harmonics does not take place.

Let us give an estimate of the third harmonics gener-
ation efficiency. Assuming N = 1018 cm−3, m = 0.1m0,
with m0 the free electron mass, and T = 77 K, we have
µ ≈ εF � 0.03 eV and µ/kT � 5. If Ni = 1016 cm−3,
Λ/εs = 0.5, |ei| = |e|, the electron-impurity collision fre-
quency in a weak field is ν � 1013 s−1. In such a situation,
for a CO2 laser radiation with ω � 2 × 1014 s−1 and flux
density I � 2 × 107 W/cm2 one has ν/ω � 5 × 10−2 and
γ2 � 1. As a result, from formula (36) and data shown in
Figure 2, for the third harmonic generation efficiency one
obtain η(3ω) � 2.5×10−11, which amounts to the flux den-
sity at 3ω I(3ω) � 5×10−4 W/cm2. With the parameters
considered in the present estimate, the characteristic time
of the initial electron temperature doubling, due to laser
energy absorption, is τT = 3NkT/2Q � 3/νγ2 � 300 fs.
Accordingly, if the laser pulse duration is τp ≤ 300 fs,
electron heating is negligible. If instead, τp > τT , insofar
as kT � µ, heating yields a relative increase of the gen-
eration efficiency thanks to the decrease of the electron
degeneracy. If the temperature grows to the extent that
kT > µ, the generation efficiency diminishes due to the
further decreasing of the small parameter γ2.

In a more strong field, when I = 109 W/cm2, one has
γ2 = 50, γ2

µ = 5. In such a case, from (36) and Figure 2,
η(3ω) � 2.5 × 10−6, I(3ω) � 2.5 × 103 W/cm2, and the
temperature doubling time τT ≈ 3/νγ2I(0, γµ) ≈ 2π/ω �
30 fs is of the same order as the laser field period. As
τp � 2π/ω, during the laser pulse action electron heat-
ing takes place. For instance, for τp = 10π/ω � 150 fs,
the initial temperature increases by a factor of 5. Such a
temperature increase yields the removal of electron degen-
eracy, but the electrons still experience a strong field as
effectively γ2 ≥ 10. As a result, the generation efficiency
maintains the same order of magnitude as in the beginning
of the laser pulse action. Numerical estimates are reported
with the assumption that IR pulse duration is hundreds of
femtoseconds. Presently the pulse durations of gas lasers
are significantly longer, which makes it difficult to directly
use such lasers to investigate harmonic generation. At the
same time it is possible to use existing ultrashort pulses
in the visible, to cut from a long IR pulse a part with the
required duration. For instance, it may be done through
rapid ionization of a dense matter with an ultrashort pulse
in the path of the IR radiation propagation. With such a
simple way to create a short pulse, a large part of the
IR radiation energy is lost, but the energy flux density is
left unchanged.

5 Conclusion

We have studied odd harmonic generation of infrared laser
radiation in degenerate semiconductors in the process of
electron scattering by charged impurities. It has been
shown that degeneracy of electron distribution over ve-
locities has a strong influence on the harmonic generation
efficiency in the domain of not very high laser intensities.
It is expected that similar influence takes place for other
scattering mechanisms, now under consideration.
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